
Separation of Zeros of the Riemann
Zeta-Function*

By R. Sherman Lehman

1. Introduction. The Riemann zeta-function D(s) is the analytic function of
s = o- + it defined by the formula

c(s) =
Z ?
n=1 n

for a > 1. It was conjectured by Riemann that all of the zeros of A(s), other than
the zeros at the negative even integers, lie on the line a = 4. Extensive verifications
of the Riemann hypothesis using high-speed computers have been made by Lehmer
[1], [2], who established that the hypothesis holds for the first 25000 zeros in the up-
per half plane, and by Meller [3], who showed that it holds for the first 35337 zeros.
In this paper we describe computations made with an IBM 7090 at the Computer
Center of the University of California at Berkeley which establish that there are
exactly 250000 zeros of D(s) for which 0 < t < 170571.35, all of which lie on the line
0f = 2 and are simple. The major part of the calculation was done using a program
which separates zeros of <(2 + it) automatically in most cases. This program used
the Riemann-Siegel asymptotic formula with only the first term of the asymptotic
expansion retained so that the error bound derived by Titchmarsh [4] could be used.
An ALGOL version of the program is given in Section 7.

2. Error Analysis. In formulas for which numerical bounds are of importance
we shall use a to denote a number satisfying ? 6 | < 1. The number denoted will,
in general, be different for different occurrences.

If

(2.1) K(T) = (1/2r) Im {logP(r + ? ir)} - r logw,
then the function

(2.2) Z(r) = exp (27riK(T))(2 + 27rir)

is real for real r (see [4, p. 235]). It can be shown [4, p. 247] that for r > 8

(2.3) K(T) = 4(7 log r - r - 4) + a 0.0006 i

We remark that our notation follows that of Turing [5]. It differs from that of
Haselgrove [6] who uses t rather than r as the argument. Consequently, Hasel-
grove's Z(t) is denoted by Z(t/27r) in our notation.

Theorem 2 of [4], when some minor numerical errors are corrected, states that
for r > 8

Z(r) - 2 sac cos 27r(r log n -
K(7-))

(2.4) n= n2

+ (-1)m-l I /4h() exp I-i/961rr + 6 + iCO7} + R

Received March 11, 1965.
* This research was supported in part by the Air Force Office of Scientific Research un-

der Contract No. AF-AFOSR 553-64.

523

524 R. SHERMAN LEHMAN

where

o = IT 1/2, 1 ='T1/2
7

I W6
7

= 2 , 7 I < rn~~r'12] ~~~r -in,
~160ir2r~2'

I <3Ow2,r2

h(~) -cos 2r(4 -2 - 1/16)
cos 27rt

and the following inequality holds:

IR I< 0.4652 + 0.4168
/ -3/4+

0.969
100.47113

For1-0.81371/3
+ -0.489t-1/2

+ 5112

+ 0.456 10-0.2671/3 + 0.309 io-0.457 + 0.655 10.77 + 0.065 10.

For X > 1500 we obtain by a straightforward numerical calculation using

I h(W) I < 1 (which results from (2.6) and (2.7) below)

Z(r) = 2 cosE 2r(r log n - K(T))

+ (-1)m-ll/4h () + a . 0.929T-'4.

Turing [5, p. 103] has shown that this formula holds with a slightly increased error
if mi = [T1/2] - 1 and _ 1/2 -m has a value slightly greater than 1. If 1 < < 2
then it suffices to increase the error term by

4r (M + l)-(/2{ 1) + (+21)2f + (?1)1/2 (m +)1/2)

Consequently

(5Z~r) = 2 E cos 27r(r log n - K(T))

(2.5) n=11n

+ (1)m-1T-l1/4h() + a .o93T 3I4

if X _ 1500 and in is an integer such that

0 _=r I12_ m < 1.0005.

For numerical purposes it is convenient to replace h(t) by a polynomial ap-
proximation. Turing [5] has given a quadratic approximation with a rigorously
determined error term, but we shall need a more accurate approximation. Let

(1 -z cos 7r(z2 /2 + 3/8)
(2.6) 0 (z) = h =-

Cos

/ cos irz

Since q5(z) is an even entire function, we have

4P(Z) = Cnzn
nz=0

with c2+l = 0 (k = 0, 1, 2, ***). We obtain a polynomial approximation to 4(z)
by truncating the power series and estimating the remainder.

We have

n
P J C Zn+l dz

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 525

where C is a positively oriented contour about the origin, which we shall take to
be the rectangle with corners at ?t2 ? 2i. If z = x + iy with x and y real then

sinh ry I _ cos 7rz < cosh 7ry

and

Im (z2/2 + 3/8) = xy.

Also, when x is an integer I cos lr(x + iy) i = cosh iry. Hence on the vertical line
segments of the contour

| p(Z) | <cosh irxy _ cosh 2ry < cosh 4ir <cosh 4r
cosh 1ry cosh 7ry cosh 21

<
sinh 2r

while on the horizontal line segments

(P(Z) < cosh 7rxy cosh 27rx < cosh 47r
|sinh cry sinh 27r =sinh 27r

Thus

16 cosh 47
<700

= -2w 2n+l sinh 2r 2n

The remainder when the series is truncated after the term Cn Z is thus less than

700 ! z 1/2
2n 1 z I z 1/2

If t = (1 -z)/2, then j z j < 1.001 when 0 < t < 1.0005. It then follows that the
error made by omitting terms after C24Z24 is less than 5.10 5. We can estimate the
error committed by omitting additional terms of the series and by rounding the
coefficients to 5 decimal places by using the values of the coefficients cn given by
Lehmer [2] and Miller in [6]. We find

+(z) = 0.38268 + 0.43724z2 + 0.13238z4

(2.7) - 0.01361z6 - 0.01357z8 - 0.00162z'0 + &4.9* 10-4

provided I z j < 1.001.
Now let us estimate the error made when computing a value of Z (T) by means of

a digital computer using (2.3), (2.5) and (2.7). First, we shall carry out our analysis
without considering in detail the particular properties of the machine used, and
then we shall specialize our discussion to two methods used to compute Z(r)
with an IBM 7090.

We assume that X is given exactly as a digital number. Let el be a bound for the
absolute error in computing log n, E2 a bound for the absolute error in computing
log r, 63 a bound for the absolute error in computing cos 2irx when x is given exactly
as a digital number between 0 and 1, and E4 a bound for the absolute error in com-
puting n-112. The bounds Eq, , e2 , E4 and also E5, I6, and 67 which occur in the follow-
ing argument are all assumed to be constants independent of n and x. In order to
simplify the error analysis we shall assume that the sum in (2.5) is accumulated
using fixed-point arithmetic. We also assume that r1/2 iS computed sufficiently
accurately so that an integer m can be determined for which 0 < T112 _ m < 1.0005

526 R. SHERMAN LEHMAN

so that (2.5) and (2.7) are valid. (Actually, it should be possible to assure that
0 ? r1/2 - mn < 1 but in our computation a programming error prevented this.)

First, from (2.3) we compute K(T) and then obtain r log n- K(T) with an error
less than

1ET + -2E2T + 0.0006r1 + E5

where E5 is a bound for the additional error due to rounding in performing the
arithmetical operations. We then obtain cos 27r(r log n - K(T)) with an error less
than

2WrElr + 7WE2T + 0.0012wrr + 27WE5 + E3e

Each term in the sum in (2.5) is then obtained with an error less than

(21TrEr + 7rE2T + 0.0012w7rr- + 27rE5 + E3) (n-12 +)+ 4 + E6

where E6 is a bound for the rounding error in the multiplication. Since the sum is
accumulated using fixed-point arithmetic, a bound for the error in the sum can
be obtained by summing these bounds. We have

2 5? (n1/2 + E4) < 2E4m + 4m1n2 < 4.02rl/4,
n=1

provided E4 < O.Oln1-1/2 as we shall assume. Finally, let (4.9. 10-4 + E7)r-1/4 be a
bound for the absolute error in computing ir"'4h(t) using a digital approximation
for the polynomial in (2.7). Combining the error estimates, we see that Z(r) is
computed with an error less than

(26Ei + 13E2)r5/4 + (2E4 + 2E6)T12 (4.1E3 + 26E5)r"4
(2.8)

+ (4.9* 10-4 + E7) -1/4 + 0.95T-3/4

In our computation with the IBM 7090 we used two different methods for com-

puting Z(r). The first was designed for maximum speed and in most cases was
sufficiently accurate to determine the sign of Z(ir). Whenever that was not the
case, a slower but more accurate method was used. In the following discussion we
shall assume that 1500 < r < 100000.

We first sketch how error bounds for the slower method were obtained. Values
of log r were obtained by means of a standard double-precision subroutine. Be-
cause of complications in the error analysis of the double-precision subroutines,
the bound E2 = 5 10-14 which we obtained is probably quite conservative. The
same subroutine was also used to evaluate log n, but since in this case only 316
values are required, a comparison with a 16 decimal place table [7] was possible.
In this way it was shown that E, = 3 10-15 is permissible.

The cosines were computed by means of a single-precision fixed-point sub-
routine programmed by the author for which the error was proved to be less than

E3 = 2- 10-10. The values of n-l/2 were obtained by means of a double-precision
square root subroutine and then rounded to 27 binary places. Thus E4 = 3.8 10-9
is permissible. For bounds on the rounding errors we found that we could take

E5 = 2-35, E6 = 2-28 and E7 = 10-5. Substituting these values into (2.8), we obtain

the following error bound for the more accurate method:

(2.9) 7.3 10-13r5/4 + 1.52 10-8r1/2 + 1.6 10 9r1/4 + 0.0005 1/4 + 0.95i3/4

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 527

In the faster but less accurate method a table-look-up scheme was used to
compute cosines with the table occupying half of the memory of the computer.
The table of cos 27rx for 0 ? x ? 1 contained 214 entries which were generated by
the previously mentioned subroutine. Since the value at the nearest tabulated
point was used, the error in computing a cosine could not exceed 27r 2-15 + 2 10-10.
Hence we let E3 = 1.92 104 . The values of log n were obtained from those used in
the more accurate method by rounding to 32 binary places. Thus we let
El = 1.2. 10-'. The parts of the computation concerned with log -, n-112 and q (z)
were the same as for the more accurate method. Hence we can take E2, 4I E5 I E6 and
E7 the same as before. Substituting into (2.8), we obtain for the faster method the
error bound

(2.10) 3.2 10o-9514 + 1.52. 10-8,r112 + 8. 10-4114 + 0.0005r 1 + 0.957i314

3. The Verification Program. The method that we use for verifying the Riemann
hypothesis for 0 < t < T is the following: By counting sign changes of Z(r) for
0 < r < T/27r we obtain a lower bound for the number of zeros of c(s) on the
line o- = 2 for which 0 < t < T. We then show that this lower bound is equal to
N(T), the total number of zeros of c(s) for which 0 < o- < 1, 0 < t < T. In this
section we shall explain the design of the program for separating zeros. The method
for determining N(T) will be discussed in Section 5.

It is known [8, p. 179] that

(3.1) N(T) = 2K(T/27r) + 1 + S(T),

where, if T is not the ordinate of a zero of P(s),

(3.2) S(T) = (1/7r) arg t(' + iT)

with the value of the argument obtained by continuous variation along the line
from cc + iT to 2 + iT starting with the value 0.

If n is a nonnegative integer, then let I-n be the positive real number for which
2K(Q7n) = n. These points On are called the Gram points. The interval (gin r? T+),

which we also denote by In, is called the nth Gram interval. The statement, that
there is exactly one zero of (2 + 2rir) in each Gram interval so that the nth
positive zero of 2 + 2rii-) is in In-2, is known as Gram's law. This "law" holds
when n < 127 but fails for n = 127. It continues to hold in most cases as far as
calculations have been performed. Consequently, in designing a program to sep-
arate zeros of Z(r) it is advantageous to evaluate Z(r) at points gn which are ap-
proximations to the Gram points tn.

It is known (see [8, p. 189] or Section 5 below) that
rT

f S(t) dt = O(log T).

Using this fact, one can prove without difficulty that the number of successive
integers n for which 0 < 27r-n < T and N(27r-n) # n + 1 is O(log2 T). Thus we
expect a one-to-one correspondence between zeros and Gram intervals with the
zero corresponding to an interval located either in the interval or in a nearby Gram
interval. Consequently the verification program was designed so that when a
failure of Gram's law occurred, an attempt was made to find enough zeros nearby
to maintain the one-to-one correspondence.

528 R. SHERMAN LEHMAN

We shall say that a failure of Gram's law of type vovi ... Pi occurs at n if the
following three conditions are satisfied:

(i) There are exactly Vk zeros in the Gram interval In+k for k = 0, 1, , 1;
(ii) Po + pi + ***+ Vl -= I + 1 ;
(iii) Vo + V1 + *? e+ Pk k + 1lfor O < k < 1.

For example, the first failure of Gram's law occurs at 125 and is of type 0 2 be-
cause there are no zeros in I125 and two zeros in I126.

Before writing a program for verifying the Riemann hypothesis, we had con-
structed a table of the first 10000 zeros of c(s) giving the ordinates -yn with about
7 decimal place accuracy and the corresponding values of 2K(-y,/2r) to 4 decimals.
This table confirmed the result of Lehmer [1] that for the first 10000 Gram intervals
all failures of Gram's law are of the following five types:

0 2, 2 0, 0 3 0, 2 1 0, 0 1 2.

We note, however, that we found one more failure of each of the last two types
than Lehmer did. A failure of type 2 1 0 occurs at 9807, and one of type 0 1 2 occurs
at 9971. Also a failure of type 2 1 0 occurs at 6412 rather than at 6411 as reported
in [1].

We designed our verification program to handle automatically only failures of
Gram's law which are of the above types and are such that the zeros are far enough
apart to be separated by a calculation based on (2.5). For all other cases the
machine was instructed to print a report of the failure and then continue the
computation.

In Section 7 we give the complete text of our verification program in ALGOL.
The program is arranged so that the major part of the computation is performed
by the three procedures sign Z, Gram, and two zeros found. We shall first describe
these procedures briefly and then sketch how they are used in the verification
program.

The procedure sign Z is used to determine the sign of Z(-r). It returns the value
+1 if Z(ir) is shown to be positive, -1 if it is shown to be negative, and 0 if the
procedure is unable to determine the sign. Z(-) is first computed using the faster,
less accurate method of Section 2, and then the computation is repeated with the
more accurate method if the first one is unable to determine the sign with cer-
tainty. In order to leave some margin for safety the procedure was constructed to
return the value 0 if the value computed was not greater in absolute value than
twice the error bound obtained in Section 2. The mathematics concerned with
error analysis for computations seems to be especially liable to error. If a program
is run with an error bound which is later found to be incorrect, then the entire
computation will be wasted. (Such a misfortune was reported in [5].) We chose the
above device to give some protection against this possibility. It should perhaps be
noted here that there is a second order error in the computation due to errors in
computing the error bound. These errors are all quite small and in fact it is easy
to show that the error bounds (2.9) and (2.10) are large enough to cover these
additional errors.

The procedure Gram is used to obtain points gn which are approximations to
the Gram points mr . If we consider the transformation +(Qr) = (n + j)/(log r - 1),
then it is easily shown that for n > 7 the iterates defined by 7n(k+l) = b(Tn ()

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 529

(k = 0, 1, 2, - -) converge to the fixed point <n* of the transformation provided
Tn(O) is sufficiently near Tn. Also, by (2.3) we have mn= rn* + 0(1/n). For n > 30
it is also easy to verify that 0 < +'(Qr) < K for 12- ?< < oo where K is a con-
stant less than 1. Consequently, if Tn(?) is chosen in this interval, then the iterates
will converge to Tn* and the absolute value of the difference between successive
iterates will decrease. In the procedure Gram this iteration scheme is employed with
gn used as an initial approximation to 9n+1. The iteration is discontinued when
because of round-off error the distance between successive iterates ceases to de-
crease. An exact error analysis of this procedure was not undertaken because all
that is necessary for our verification is that it furnish a monotone increasing se-
quence of points qn.

Given an interval (a, c) with Z(a) and Z(c) having the same sign, the proce-
dure two zeros found is used to try to show that Z(r) has at least two zeros in the
interval (a, c). This is done by a bisection process which splits the interval into
a maximum of 28 subintervals. At each stage a search is made for a point where Z(r)
has the opposite sign. If such a point is found, the bisection is discontinued and the
value true is returned. If the bisection process fails to locate a point where Z(r)
has the opposite sign, then the value false is returned.

Now we shall sketch how these procedures are used. The strategy used by the
verification program is to set up a one-to-one correspondence between approximate
Gram intervals and located zeros. At each approximate Gram point gn , the procedure
sign Z is used to determine the sign of Z(gn). If the value 0 is returned, which means
the sign is in doubt, then a new approximate Gram point is chosen nearby where
the sign can be determined with certainty.

Because of the heuristic assumption that all failures of Gram's law are of the
five types found in the first 10000 Gram intervals, the program proceeds with the
assumption that each failure begins with a Gram interval where the sign of Z(r)
is the same at both end points. Consequently, as long as the sign of Z(r) alternates
at successive approximate Gram points, the one-to-one correspondence between
Gram intervals and real zeros of Z(r) is maintained; and the program proceeds
ignoring the possible existence of additional unlocated zeros.

If at the points gn, gn+1, gn+2 the sign distribution is + + + or - -, then

the procedure two zeros found is used to try to show that there are two zeros in
the interval (gn, gn+2) and thereby maintain the one-to-one correspondence. If
at the points gn , gn+1, gn+2 , gn+3 the sign distribution is + + - - or - - + +,
then the sign of Z(r) is determined at q = (gn+l + gn+2)/2 (or at a nearby point
in exceptional cases). Then two zeros found is used to try to show that there are
two zeros in (gn , q) if Z(r) has the same sign at gn and q and two zeros in (q, gfl+3) in
the other case.

In all cases where two zeros found fails to prove the existence of two zeros in a
specified interval and also in all cases where the sign distribution does not follow
one of the patterns described, a special report is made which indicates the type of
failure. In each such case where the verification program has failed to maintain
the one-to-one correspondence between zeros and Gram intervals, enough informa-
tion is printed to determine how many zeros are missing and then the verification
is resumed. The treatment of these exceptional cases will be discussed in Section 4.

In addition to reporting on exceptional cases the program keeps a count of

530 R. SHERMAN LEHMAN

failures of Gram's law. Instead of counting the failures directly, a count was kept
of the number of displacements of zeros across Gram points required to obtain
the actual distribution from one in which there is exactly one zero in each Gram
interval. Thus the count of displacements was increased by one for each failure of
type 0 2 or 2 0 and by two for each failure of type 0 3 0, 2 1 0 or 0 1 2. It should be
noted, however, that this displacement count is not exact because in our com-
putation instead of using the Gram points rn we use approximate Gram points go.
For another machine, or even for the same machine with a different logarithm
subroutine, the count of displacements could be expected to differ slightly.

In writing the verification program the innermost loop of the program, which
occurs in the evaluation of the sum

Cos 27rw(logn - K(T)

n=1 n1/2

was first written directly in the machine code of the IBM 7090 with attention given
to minimizing execution time. Next, the entire program was written in ALGOL and
tested with the BC-ALGOL interpretive system, an implementation of ALGOL
(developed at the University of California, Berkeley) which, although it is too
slow for production running of large computations, is useful for testing programs.
The procedure for determining the sign of Z(-r) was then translated into machine
code using a symbolic assembly language. The remainder of the program, for which
running speed was of less importance, was translated into FORTRAN IV and then
compiled to obtain the final version of the program.

4. Results of Computations. Except for some runs which were made to test
it the verification program was not used to investigate the first 10000 Gram in-
intervals because they had already been studied in more detail earlier. The pro-
gram was run for blocks of 1000 Gram intervals for 10000 ? n < 50000 and for
blocks of 5000 Gram intervals for 50000 ? n < 250000. The results of these runs
are summarized in Table 1 for sets of 10000 successive Gram intervals. The number
of failures of Gram's law, as indicated by the column labeled "Displacements",
shows only a slow increase within the range of the computation. The column
labeled "Sign doubtful" records the number of times the procedure sign Z was
unable to determine the sign of Z(r) at an approximate Gram point. When this
happened, a new approximate Gram point was chosen nearby. The comparatively
large number of such cases at the top of the table occurs because the truncation
bound 0.937i314 of (2.5) is relatively large there.

The program encountered a total of 104 cases which it was not able to handle
automatically. In each of these cases one or more reports were printed indicating
the type of failure and the number of missing zeros. These cases were then examined
with the aid of further programs. The last six columns of Table 1 give information
about these cases.

The verification program will look beyond the last Gram interval of a block to
find a missing zero, but it never looks before the first interval of a block. Thus,
if N(27rgw) 5? n + 1 at the beginning of a block, a report of a special case may
occur even though the failure is of a type which ordinarily is handled automatically.
The column labeled "Out of phase" records the number of these cases. Each of these

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 531

TABLE 1

Index of Dis- Sign Failure types
initial Di- Sg
Gram place- doubt- Out of01 3 0 1 2 1 0 Miscel-

interval ments ful phase 030 1 1 22 1 1 ? laneous

10000 1013 32 2 1
20000 1102 23 2 1 2
30000 1115 16 1 1
40000 1161 13 1 1
50000 1120 12 1
60000 1142 11 1 1 1
70000 1198 12 2 2 1
80000 1204 10 1 2 1 2
90000 1178 15 1 1 1

100000 1211 8 1 1 1 1
110000 1192 8
120000 1208 8 2 3 2
130000 1237 11 1 2
140000 1200 7 2 1 1 2 1
150000 1262 4 1 1 1 2
160000 1195 7 1 1 1 2 1
170000 1265 5 1 1 1
180000 1223 11 1 1
190000 1285 7 1 4 2
200000 1264 1 1 3 2
210000 1277 7 1 2 2 2
220000 1226 5 1 2 1
230000 1260 6 1 1 2 3 2
240000 1259 2 1 2 1

Totals. 28797 241 14 23 20 14 18 15

14 cases was handled by running the verification program for a small block of 20
intervals overlapping the beginning of the larger block.

Of the 90 remaining cases 75 correspond to failures of types 0 1 3 0, 0 3 1 0,
0 1 1 2 and 2 1 1 0. We shall give detailed information on the 15 cases classified as
"Miscellaneous" below. In all but 9 of these 90 cases the zeros could be separated
by using values of Z(t/21r) tabulated with steps of 0.1 in t. (In particular, all cases
for which t > 80000 were handled in this way.) The other cases required a finer
mesh.

In five cases failures occur in which the program fails to find three zeros in
(gn , g,+3) even though the failures are of the types 0 3 0, 0 1 2 or 2 1 0. This happens
because the program was not designed to handle automatically a case in which all
three zeros are on one side of the point (gn+1 + ? g?+2)/2. These failures occur at
171382, 206715, 209783, 233173, and 234500. In one other case a failure of type
2 1 0 occurred which was not handled automatically. This failure actually occurs
at 25094, but a report was made for 25093 because of the presence of a zero near
enough to the right end point of 125593 so that the sign was indeterminate at g2504e
A new approximate Gram point was then chosen to the left of the zero in I2593

532 R. SHERMAN LEHMAN

A failure of type 0 3 1 1 0 occurs at 243021, and at 68084 a failure occurs which
is either of type 0 1 1 2 or 0 1 1 3 0.

In five cases there were pairs of zeros which could be separated by the verifica-
tion program if the error bound (2.9) was used but not if twice the error bound was
used. These close pairs are located in the Gram interval In for n = 24198, 73996,
82551, 87759, 106071.

Finally, there were two cases where the formula (2.5) with the error bound
(2.9) did not have enough accuracy to separate a close pair of zeros. In order to
handle these cases we constructed a subroutine to compute Z(r) with an absolute
error of less than 10-6 for 10 < r < 40000 which used the Euler-Maclaurin sum
formula (see [2, pp. 102-103]) together with the formulas

I Z(r) 12 = {Re + 27rir) }2 + {Im + 27rir) }2,

sgn Z(r) = (-l)8- sgn {Im (+ 2irir)} for r in In.

In each case it was sufficient to calculate Z(r) at one point to establish that a
sign change occurs. The first of these close pairs, which is located in 118858, has been
reported by Lehmer [2] and Meller [3]. The second pair is probably the closest pair
among the first 250000 zeros. The zeros are located at about

2 + 71732.9012i and 2 + 71732.9159i.

The maximum value of j D(s) i on the line a = 2 between these two zeros is about
0.0005. The first zero is located in 195246 while the second is in 195247, and these are
the only zeros in these Gram intervals. Thus, unlike the close pairs which have
been noticed previously, there is no failure of Gram's law in connection with this
pair.

The Euler-M\aclaurin formula was also used to separate the close pairs of zeros
in I82551 , 187759 and 1106071, giving an additional check of the computation in these
cases.

The total machine time used in production runs was about 125 minutes. Of
this, 100 minutes were used in running the main verification program while about
24 minutes were used in handling the 90 special cases discussed above. Less
than one minute was used in carrying out the computation described in Section 5
to complete the verification. The main verification program was still quite efficient
at the upper end of the range of the computation. For the 25000 Gram intervals
beginning with the 225000th the running time required was 12.42 minutes, so that
about 33 zeros were separated per second. On the other hand an evaluation of
Z(t/2wx) by means of the Euler-Maclaurin formula for t of the order of magnitude
70000 required about one minute of machine time.

a 5. Completion of the Verification. In order to gather additional information,
a modified version of the verification program was run for 249900 ? n < 250100
with information printed out each time Z(r) was evaluated. This information
included the value of K(r) at each of the points. Taking into account the computa-
tional error, we established in this way that for the approximate Gram points gn

(5.1) 1 2K(n) - n I < 0.01 (249900 ? n ? 250100).

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 533

We shall now describe how the information from this run was used to complete
the verification that if

To= 27g250000 = 170571.358 *-,

there are exactly 250000 zeros of c(s) for which 0 < t < To, all of which lie on the
line a = I and are simple. That there are at least 250000 zeros of D(s) for which

= 2, 0 < t < To follows from the results of Section 4 together with a small amount
of information about the zeros found in the last few approximate Gram intervals
before g250000 . To complete the verification of the Riemann hypothesis for 0 < t ? To
we shall prove that N(To), the total number of zeros in the rectangle 0 < a < 1,
0 < t ? To, is equal to 250000. The method that we use is due to Turing [5].
Theorem 4 in [5] would be adequate for our purposes, but, unfortunately, although
the theorem is correct, the proof given in [5] contains several mistakes. Consequently,
we shall use the following weaker theorem which will be proved in Section 6.

THEOREM 1. If

rT

(5.2) S1(T) =fS(t) dt

and T2 > T, > 100, then

| S1(T2) - S1(T1) I < 3.1 log T2 + 4.8.

We obtained the following distribution of zeros in the approximate Gram in-
tervals starting with the interval with left end point g250000:

2, 1, 1, 1, 1,1,1,1, 1,1; 1,1, 1,1, 1, 0,2, 1, 1,1; 1, 1, 1,2, 0,1, 1, 1,1,1;

1,1,1,1,1,1,1,1,2,0; 1,1,1,1,1,1, 0, 1, 2, 1; 1,1,1,1,1,2,1,0,0 2;

1,1,0,2,0,2,1,1,1,2; 0,1,1,1,1,1,1,1,1,1; 1,1,1,1,1,1,2,0,1,1;

0, 2, 1, 1, 1, 2, 0, 1, 1, 1.

Thus, in these 100 approximate Gram intervals we find 101 zeros. (The extra zero
in the first interval is compensated for by the absence of a zero in the previous
interval.)

Let

N(27rg250000) = 250000 + q

where q is a nonnegative integer. The integer q is even because complex zeros or
unseparated real zeros of Z(r) must occur in pairs. We prove that q = 0 by showing
that q < 2. We apply the equation

S(2irr) = N(2irr) - 1 - 2K(Qr)

at r = gn for 250000 ? n ? 250099. At 8 points (corresponding to the underlined
numbers in the above listing), the first of which is g25000o, we have

(5.3) S(2rgn) > q - 1 - 0.01;

at 7 points (corresponding to the overlined numbers)

(5.4) S(2wxgn) > q + 1 - 0.01;

534 R. SHERMAN LEHMAN

and at the remaining 85 points

(5.5) S(2wxgn) > q - 0.01.

Also by (5.1) S(2rr) cannot decrease by more than 1.02 in an approximate
Gram interval. Consequently, if T1 = 27g2500oo and T2 = 27g250100, then

rT2 {T2/27r

L S(t) dt = 2w f S(27rr) dr > 27(q - 1.03)(g250100 - g250000) + 2r(L7 - L8)
w1 tl/2 r

where L7 is the total length of the 7 intervals (g,,, g,,+,) for which we obtained (5.4)
and L8 is the total length of the 8 intervals for which we obtained (5.3). The approxi-
mate Gram intervals all have lengths between 0.096 and 0.099 and have total
length greater than 9.79. Hence, if q > 2,

rT2

f S(t) dt > 27r{(0.97)(9.79) + (0.672 - 0.792)} > 58,

while on the other hand by Theorem 1

rT2

f S(t) dt < 43,

a contradiction. Therefore, q = 0 and the first 250000 zeros of c(s) for which
0 < t < 170571.35 are on the line a = 2

6. Proof of Theorem 1. For the proof of Theorem 1 we need several lemmas.
LEMMA 1. If T2 > T1 > 0, then

O+j T2 r+iT

w{S,(T2) - S1(T)} = j log I c(s) I ds - log I c(s) c ds.
1/2+i T2 1/2+iT1

Proof. To define log c(s) uniquely we consider the branch of the logarithm which
is real for s > 1 and is obtained by analytic continuation in the complex plane cut
from -oo to 1 along the real axis and cut along the line from -oo + iy to p = f + iy
for each complex zero p of D (s). In the cut plane we consider the half-strip S for
whichof > 2, T1 < t < T2. Then for each zero p for which o > 2 T< _ t < T2
we delete from S any points which lie in a closed disk of radius E about p, where
E is a small positive number. It is easily seen that if E is sufficiently small, then the
disks are disjoint and the remaining domain D, is simply connected.

We apply Cauchy's theorem integrating log c(s) over the boundary of D, and
then let E -* 0. For each small E the integral vanishes because log c(s) has no singu-
larities in D, and is exponentially small as - -* -. As E -> 0 the contributions to the
integral of portions of the boundary which are circular arcs all approach 0 because
log c(s) has only logarithmic singularities at the zeros p. In integrating over por-
tions of the boundary along a cut the direction of integration is opposite for the
two banks of the cut. Since on opposite banks the values of log c(s) have the same
real part, the total contribution to the real part of the integral from the horizontal
segments other than those along t = T1 and t = T2 is zero. Applying (3.2) we obtain
the lemma.

LEMMA 2. If a > 1 then I log | c(s) I I < log </(o - 1).

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 535

Proof. We have

_01 0 fi00 dx rji I ?(S) I= |E e
< E n < + J1 zG a=

and

1 = A(n) ? 0 I (n)K0!< '
c n(s) = n 1 nfno' n 0.- 1 0

LEMMA3. If f > -2and t > 27r then I P(s) I < t.
Proof. Applying the formula [8, p. 14]

1 1 f0 [X] -x +
cS) =s-i + ii XS9+l

which is valid for o- > 0, we find that for o > 2 t > 0

1 sIIdx 0dxlll t2V112 1 1 \
|P(s)<I - ?+ 2+ + - + - 1 + - < -+ + t (1+ - 0-+ tJi 12 2 Y2 /t 2\8t

and hence for a> ,t > 27r

(6.1) 4(s)I <t?l <

which establishes the lemma for o > 2?

We estimate s(s) for -3-< < 4 by applying the functional equation

21
- s) = F(s) cos -s (s).

(2r)s 2

For a > 0, t > 0

log I(o + it) I < - 7rt + (r -) log t + ' log (27r) +w3

where [4, p. 237]

W3 I =
2t2 + 12 + 720ot2

Hence, for 2 < < 5, t > 2r

3 I - t25 + 12t + 16 < 0.172 < log 1.19, 4t 12t 360t2

and therefore

lu (S) t/~ 0-112
(2s)e]- 1.19e1 (-)

(27r) \27J

Also, for t > 27r

Cos rs I < - (ert/2 + e-7rt/2) < (1.001)ertI2.

Thus for 2 < a _ t > 27r

(6.2) | P(1 - o + it) | = t(1 - s) | _ 1.2(t/2r) | (s) |.

536 R. SHERMAN LEHMAN

Hence for 2 < a < 3,
t _ 2ir we obtain by (6.1)

(1 - a + it) ? 1.2 t (t + 1) < t

and for 3 < a < t > 27r we obtain by Lemma 2

a 1 + it) I < 1.2() ff < 36(t < t2

completing the proof of the lemma.
LEMMA 4. Let f(s) be an analytic function regular for I s - so I _ R' such that

f(so) $ Oand such that I f(s)/f(so) I _ M on s - soj = R'. Let s s2 , Snbe
the zeros of f(s) in the circle s - so / ?R where 0 < R < R' with multiple zeros
repeated. Then if I s - so I < r < R)

log f(s) | {log f(So) | + E lgs - 8lk

2- r flog M + n log ft R f
- ft - r4og R

Proof. Consider the function

g(s) = f(s)

(S - Sk)
k=1

which is regular for I s - so | < R' and does not vanish for I s - so l < R.
On I s- so =R'we have

g(s) A f(s) II {so- Sk' < f (S) (Rf n
g(so) - (so) Mk sSk f(so) kR' - R/

and hence

|g(s) R)n < M (RiftR
By the maximum principle this inequality must hold for I s - so I ? R'. The func-
tion h(s) = log {g(s)/g(so)} with h(so) = 0 is thus regular for j s-so - s < R and

Re h(s) < log M + n log
R
-

R' -R'

Applying the Borel-Caratheodory theorem [9, p. 174] with circles of radius r and
R, we obtain

h(s) I <l _ {logM +nlogfR f}*

The lemma follows by using the definitions of g(s) and h(s) and the fact that
Re h(s) I _ I h(s) I.

To prove Theorem 1 we show that the inequality
re+fit

(6.3) j log I c(s) I ds< 4.8 log t + 7.5
1/2+it

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 537

holds for t > 100. Then by applying the inequality for t = T1 and t = T2 we ob-
tain by Lemma 1

7r I S1(T2) - S1(T1) I < 9.6 log T2 + 15

from which the theorem follows immediately.
We break the integral in (6.3) into two parts, one going from 2 + it to so=

1.1 + it and the other from so to so + it. The latter is easily estimated since for
C> 1

|log I (s)| < I log P(s) | Z 1 1
p n=1 npl n-i npl

and hence by Lemma 2
f0% log f 1' __

log (s) ds < do

(6.4) p n1l n2p' ' log p log 2 p n=i npl
ln

< log ?(1) < log 11 <3.5.

log 2 IOg29

To estimate the integral from A + it to 1.1 + it we apply Lemma 4 with
f(s) = t(s), so = 1.1 + it, r = 0.6, R = 0.9 and R' = 2.6. If Skis a zero of D(s) in
the circle s - so I < 0.9 with Re Sk = 0k, then because I so -Sk < 1 we have

so S - Sk '0r s p1.
Jo l |-Sog," ds > ? log S - Sk I dsAlog |k do-

(/2+5 t So - Sk /2+it 0.6

(6.5) 1.-k0.3
= flaltk log I u du f log jul du > -1.33

0 5-ok -0.3

since log I u I is an even function which is monotone increasing for u > 0.
It is easily seen that when s is on the line between A + it and so = 1.1 + it,

and s' is in the strip 0 < Re s' < 1, the quantity I s-s' 1/ So- s' I takes its maxi-
mum value for s = A + it, s' = 1 + it. Consequently

I'so S IS
SO

(6.6) log SO - Sds <] log5 ds =0.6 log 5<1.33.
l/2+it So - Sk 1/2+it

On the circle s - so =2.6 we have o._ -A. Hence by Lemma 3 we can let
M = 4(t + 2.6)2/I t(So) 1. Then for t > 100

log M _ log 4 + 2 log t + 2 log 1.026 - log I A(so) I
< 2 log t - log I (5o) |-a.

Using Lemmas 2 and 4 and the inequalities (6.5) and (6.6), we obtain
rso J log I ?(s) I ds
1/2+it

+ 0.6 | log I ?(so) + 1.33n + ? 2r {logM +nlo 1g R}

< 3 log 11 - 3.2 + 4.8 log t + (1.33 - 2.4 log 17/9)n

_ 4.8 log t +4

538 R. SHERMAN LEHMAN

because 1.33 - 2.4 log (17/9) < -0.19 < 0. Combining this inequality with
(6.4), we obtain (6.3).

7. The ALGOL Program. In this section we give the complete text of the main
program used in the verification. The program uses three nonlocal procedures be-
sides the standard ALGOL functions. The procedures print2 and print4 are used
for output of 2 or 4 integers, respectively; and the procedure input is used for input
of an integer. If this program is used with another machine or with another system
of performing real arithmetic, the expression E for the error bound in the procedure
sign Z should be changed.

We remark that in the procedure sign Z it would have been better to replace
the statement

if m X m> tau then in mr-1
by

if m X m > tau then m nm-1
else if (m+1) X (m+1) < tau then m m+?1

since this would have guaranteed that 0 < - 1/2m < 1 and permitted simplifica-
tion of the considerations in Section 2.
begin
integer j, k, n, s, sa, sb, sc, sd, first, last, displacements, doubtful;
real a, b, c, d, q, u, v;
array cs[0:16383], logl, rsqrt[1:400], log2[1:400];
comment The array log2 should contain elements with double-precision accuracy;

integer procedure sign Z(tau); value tau; real tau;
comment This procedure assigns to the function designator the value +1 if
Z(tau) is positive, -1 if Z(tau) is negative, and 0 if the procedure cannot determine
the sign;
begin integer j, m, n;

real E, lc, s, sg, sum, tl, t2, x, Z;
Boolean first;
real procedure fractional part(x); value x; real x; fractional part = x - entier(x);
s sqrt(tau);
m = entier(s); if m X m > tau then m r -1;
comment The arithmetic in the following statement should be performed in
double-precision;
k := fractional part(0.5 X tau X (ln(tau) - 1) - 0.0625);
first := true; sum := 0;
comment The next loop is the innermost loop of the program;
for n := 1 step 1 until m do
begin tl = abs(fractional part(tau X logl[n]) - k);

j entier(2 1 14 X ti);
sum = sum + cs[j] X rsqrt[n]

end;
sg if m = (m . 2) X 2 then -1 else 1;
x (1 - 2 X (s-rm)) T 2;
t2 ((((-0.00162 X x -0.01357) X x - 0.01361) X x

+ 0.13238) X x + 0.43724) X x + 0.38268;

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 539

check: Z := 2 X sum + sg X t2/sqrt(s);
E if first then

3.21o-9 X tau ' (5/4) + 1.61o-8 X tau T (1/2)
+ 8lo-4 X tau J (1/4) + 5lo-4 X tau f (-1/4) + 0.95 X tau T

(-3/4)
else

7.31o-13 X tau J (5/4) + 1.6,o-8 X tau 1 (1/2)
+ 1.61o-9 X tau T (1/4) + 510-4 X tau T (-1/4) + 0.95 X tau I

(-3/4);
if abs(Z) > 2 X E then begin sign Z := sign(Z); go to exit end;
if F first then begin sign Z := 0; go to exit end;
first := false; sum := 0;
comment If abs(Z) is less than twice the error bound, the sum is recomputed
using double-precision arithmetic;
for n := 1 step 1 until m do
begin tI : = abs(fractional part(tau X log2[n]) - k);

sun := sum + cos(6.283185307179586 X tl) X rsqrt[n]
end;
go to check;

exit:
end;

procedure Gram(n, a, b); value n; integer n; real a, b;
comment Using a as an initial approximation the n+Ith Gram point is calcu
lated and assigned to b;
begin real tI, t2, t3, difference;

tl := a; difference := loIO;
iterate: t2 := (n+1.125)/(ln(tl) - 1); t3 := abs(t2-tl);

if t3 < difference then
begin tl := t2; difference := t3; go to iterate end;
b := t2

end;

Boolean procedure two zeros found(a, c, s);
value a, c, s; real a, c; integer s;
comment This procedure searches for two zeros in the interval (a, c). The param-
eter s gives the sign of Z at a and c. The function designator is assigned the value
true if the zeros are found and the value false if they are not;
begin real h, t; integer i, j;

h := (c-a)/4;
for i := 1 step 1 until 7 do
begin for j := 1 step 1 until 2 1 i do

begin t : = a + (2 X j - 1) X h;
if sign Z(t) = -s then
begin two zeros found := true; go to complete end
end;
h := h/2

540 R. SHERMAN LEHMAN

end;
two zeros found - false;

complete:
end;

comment The main program begins at this point;
initialize:

for] := 0 step 1 until 16383 do
cs[j] := cos(6.2831853072 X (j/16384 + 1/32768));
for j: 1 step 1 until 400 do
begin logl[j] := ln(j); rsqrt[j] :- 1/sqrt(j);

comment The following statement should be performed using double-pre-
cision arithmetic;
log2[j] := ln(j)

end;
start: displacements := doubtful := 0; input(first); input(last);

n := first; if n 0= then go to exit;
Gram(n-1 , n, a); sa : = sign Z(a); if sa = 0 then go to reset;

continue: if n > last then
begin print4(first, last, displacements, doubtful); go to start end;
Gramr(n, a, b); k := 0;

Li: sb := sign Z(b);
if sb -sa then

normal: begin n := n+1; a := b; sa := sb; go to continue end;
if sb = 0 then
begin doubtful := doubtful + 1; b := b - (b-a)/128;

if k > 32 then go to error exit; k :=k +1; go to LI
end;
comment If the signs are the same at a and b, then a failure of Gram's law has
occurred;
displacements := displacements + 1;
Gram(n+1, b, c);

L2: sc := sign Z(c);
if sc 0 0 then
begin doubtful := doubtful + 1; c := c - (c-b)/128;

if k > 32 then go to error exit; k :=k +1; go to L2
end;
if sc = sa then
begin comment In this case an attempt is made to find two zeros in the interval

(a, c). lostt failures of Gram's law fall under this case;
if two zeros found(a, c, sa) then
begin n := n+2; a := c; go to continue end;
print2(n, 1); n := n+2; a := c; go to reset

end;
displacements := displacements + 1;
Gram(n+2, c, d); sd := sign Z(d)
if sd # -sa then

SEPARATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION 541

begin print2(n, 2); n := n+3; a :=d; go to reset end;
comment In the following case an attempt is made to find three zeros in the
interval (a, d);
q := (b+c)/2;

L3: s :sign Z(q);
if s - 0 then
begin q := q - (c-b)/128;

if k > 32 then go to error exit; k= +1; go to L3
end,
if s = sa then begin u = a; v:= q end
else begin u := q; v := d end;
n := n+3; a := d; sa := sd;
if two zeros found(u, v, s) then go to continue
else begin print2(n-3, 3); go to reset end;

reset: Gram(n, a, b); sb : = sign Z(b);
if sb - sa then go to normal;
print2(n, 4); n := n+1; a := b; sa := sb; go to reset-
comment. The next statement is executed if the sign of Z is left undetermined
at too many points. This probably indicates insufficient accuracy in the pro-
cedure sign Z for the range considered;

error exit: print2(n, 5);
exit:
end

8. Acknowledgment. The author wishes to express his indebtedness to the
referee for many helpful remarks, including a simplification of the proof of Lemma 2
and detection of a programming error which required modification of the error
analysis.

University of California
Berkeley, California

1. D. 11. LEHMER, "On the roots of the Riemann zeta-function," Acta Math., v. 95, 1956,
pp. 291-298. MR 19, 121.

2. D. HI. LEHMER, "Extended computation of the Riemann zeta-function," Mathematika,
v. 3, 1956, pp. 102-108. MR 19, 121.

3. N. A. MELLER, "Computations connected with the check of Riemann's hypothesis,"
Dokl. Akad. Nauk SSSR, v. 123, 1958, p. 246-248. (Russian) MR 20 %6396.

4. E. C. TITCHMARSH, "The zeros of the Riemann zeta-function," Proc. Roy. Soc. London,
v. 151, 1935, p. 234-255; v. 157, 1936, p. 261-263.

5. A. M. TURING, "Some calculations of the Riemann zeta-function," Proc. London Math.
Soc., 3, v. 3, 1953, pp. 99-117. MR 14, 1126.

6. C. B. HASELGROVE & J. C. P. MILLER, Tables of the Riemann Zeta-Function, Royal
Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR 22
N 8679.

7. NATIONAL BUREAU OF STANDARDS, Table of Natural Logarithms, Vol. I, New York, 1941.
MR 2, 366.

8. E. C. TITCHMARSH, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, New
York, 1951. MR 13, 741.

9. E. C. TITCHMARSH, The Theory of Functions, Oxford Univ. Press, New York, 1939.

	Cit r23_c23:

